Research of high temperature CO$_2$ sorption from flue gas using carbonate loop

Project Nr.: NF-CZ08-OV-1-005-2015
Acronym: hitecarlo

Tests realized on the apparatus with fixed bed adsorber

Presentation of initial phase of experimental activities
Tests in fixed bed reactor

Initial proposal of the experimental laboratory apparatus

Fig. 1 Schematic drawing of changes in apparatus design (liquid chiller disassembled due to high pressure drop)

Ing. Marek Staf, Ph.D.
Tests in fixed bed reactor

Actual state of the experimental apparatus

Fig. 2

Overall view at the apparatus
Detail of the upper fittings (joining quartz/steel)

Ing. Marek Staf, Ph.D.
Tests in fixed bed reactor

Actual state of the experimental apparatus

Fig. 3

Reactor with quartz wool and the sample

Cooling down of the oven

Ing. Marek Staf, Ph.D.
Tests in fixed bed reactor

Actual problems with the apparatus to be solved

1) Big dead volume of the gas phase above the sample – ground glass joint as well as the connection quartz/steel must be outside the oven, while the sample must be placed in the lower third of the oven shaft;

2) Necessity to use low flow rates only (in the range of $1 - 3 \text{ dm}^3\text{.min}^{-1}$);

3) Pressure limitation due to reactor made of fused quartz – only atmospheric pressure or minimum overpressure allowed for the experiments;

4) Mechanical limitations due to reactor made of fused quartz – fragile joining quartz/steel with different thermal dilatation (risk of cracking, gas leakage etc.);

5) Mechanical limitations due to reactor made of fused quartz – permanent stuck of the ground glass connection (for this reason the filling and removal of the sample realized through the upper tee-piece Superlok with 12 mm diameter)

6) Insufficient length of the thermocouple probe due to inserting new tee-piece between fused quartz and steel pipes (see above the point no. 5)
Experimental conditions

Samples
- **Particle sizes:** fraction in the range of 1 – 2 mm
- **Batch size:** bulk material with volume 70 ml ⇒ weight 90 – 95 g

Temperature program
- **Calcination:** 1 000 °C (ramp 10 °C.min⁻¹)
 - atmosphere N₂
 - flow rate 2 dm³.min⁻¹
- **Carbonation:** 400, 650, 750 °C (isotherm)
 - atmosphere N₂+CO₂ 14 % vol.
- Repeating of the cycle calcination/carbonation

Measured param.
- **CO₂ in the outlet** IR analyzer ASEKO AIR-LF
- **Temperature:** thermocouple probe Ni-CrNi
- **Gas volume:** wet gas meter
Contemporary results of experiments

Tests in fixed bed reactor

Sample „Branžovy“ – content of CO₂ in gas outlet at isothermal conditions

Course of carbonation

CO₂ content in the gas outlet ; [% vol.]

Time ; [s]

Cycle 1 (200 °C) Cycle 2 (400 °C) Cycle 3 (650 °C)
Tests in fixed bed reactor

Contemporary results of experiments

Sample „Libotín“ – content of CO₂ in gas outlet at isothermal conditions (650 °C)
Tests in fixed bed reactor

Contemporary results of experiments

Fig. 6 Sample „Libotín“ – content of CO$_2$ in gas outlet during calcination up to 1 000 °C
Contemporary results of experiments

<table>
<thead>
<tr>
<th>Process</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcination</td>
<td>Start of process: 800 – 830 °C</td>
</tr>
<tr>
<td></td>
<td>Released CO₂: 96 – 98 % compared with theoretical amount</td>
</tr>
<tr>
<td></td>
<td>(calculated from content of calcite analyzed using XRF method)</td>
</tr>
<tr>
<td>Carbonation</td>
<td>Captured CO₂: ca. 75 % at 650 °C compared with theoretical amount</td>
</tr>
<tr>
<td></td>
<td>(calculated from content of calcite analyzed using XRF method)</td>
</tr>
<tr>
<td></td>
<td>5 – 6 % at 400 °C</td>
</tr>
<tr>
<td></td>
<td>(note: reaction does not reach the equilibrium state)</td>
</tr>
<tr>
<td></td>
<td>0,2 – 0,5 % at 200 °C</td>
</tr>
<tr>
<td></td>
<td>(note: reaction does not reach the equilibrium state)</td>
</tr>
<tr>
<td>Cyclic measurement</td>
<td>Periodical repeating of calcination/carbonation cycles will be the subject</td>
</tr>
<tr>
<td></td>
<td>of subsequent experiments.</td>
</tr>
</tbody>
</table>

Ing. Marek Staf, Ph.D.